Paragenesis of gold-sulphide mineralisation

Wyoming One and Caloma Two

Tomingley Gold Project

Macquarie Arc Conference / AIG Honours Bursary

RSF

Caloma Drillir

Wyoming One

Alexander Cherry

Supervisors:

A/Prof. David Cohen

Dr. Ian Graham

CIP Plant

RSF

omin

Roa

Hunsh Coleinnen

Residue Storage Facility

free Handing

Grushing &

Grineling

Site location

The Tomingley Gold Deposits

- K-Ar age date of mineralisation 453.3 ± 9.2 Ma Late Ordovician
- Interpreted age of Mingelo Volcanics
 463-455 Ma (Crawford *et al.,* 2007)
- Interpreted age of Cotton Formation

 Latest Ordovician to Early Silurian
 (Percival and Glen, 2007)

Volcaniclastic sediments; black shales; grey siltstones Andesite lavas

Feldspar porphyry

Cotton Formation; pelitic siltstones (unmineralised)

Mineralisation

Wyoming One and Caloma Two

Images courtesy of David Meates

Aims

- Describe the paragenesis of the TGP deposits
 - Describe the mineralogy
 - Determine the nature of the gold/sulphide relationship.
 - Has gold been remobilised?
 - Assess the sulphur isotope signature of the deposits.
- Assess the orogenic classification of the TGP.

Orogenic vs. Intrusion-Related

Orogenic vs. Intrusion-Related

Characteristics	Orogenic Au	Intrusion-Related Au
Tectonic setting	Deformed continental margin arcs,	Deformed continental margin, emplaced
	emplaced in structural highs during	during transition to extensional regimes
	late compression	
Structural	Variable, high complexity common,	Usually little complexity
complexity	particularly in brittle-ductile regimes	
Mineralisation	Structurally controlled; large veins,	Commonly sheeted veins, lesser breccias,
style/geometry	vein arrays, saddle reefs, replacement	veins and disseminations
	of Fe-rich rock	
Overprinting	Strong overprinting common;	Possible minor overprinting due to later
Overprinting	Strong overprinting common ; multiple vein events common	Possible minor overprinting due to later structures
Overprinting Mineralisation	Strong overprinting common;multiple vein events commonReduced sulphides (e.g. Py, Apy ± Po,	Possible minor overprinting due to later structuresReduced sulphides (e.g. Py, Apy ± Po, Loe,
Overprinting Mineralisation assemblages	Strong overprinting common; multiple vein events commonReduced sulphides (e.g. Py, Apy ± Po, Loe, Sb, Hg), minor base sulphides	Possible minor overprinting due to later structuresReduced sulphides (e.g. Py, Apy ± Po, Loe, Cpy, Sph, Gal) Polymetallic assemblages
Overprinting Mineralisation assemblages	Strong overprinting common;multiple vein events commonReduced sulphides (e.g. Py, Apy ± Po,Loe, Sb, Hg), minor base sulphides	Possible minor overprinting due to later structuresReduced sulphides (e.g. Py, Apy ± Po, Loe, Cpy, Sph, Gal) Polymetallic assemblages common (e.g. Mo, W, Sn)
Overprinting Mineralisation assemblages Relative timing of	Strong overprinting common; multiple vein events commonReduced sulphides (e.g. Py, Apy ± Po, Loe, Sb, Hg), minor base sulphidesLate synorogenic	Possible minor overprinting due to later structuresReduced sulphides (e.g. Py, Apy ± Po, Loe, Cpy, Sph, Gal) Polymetallic assemblages common (e.g. Mo, W, Sn)Post deformational
Overprinting Mineralisation assemblages Relative timing of emplacement	Strong overprinting common; multiple vein events commonReduced sulphides (e.g. Py, Apy ± Po, Loe, Sb, Hg), minor base sulphidesLate synorogenic	Possible minor overprinting due to later structuresReduced sulphides (e.g. Py, Apy ± Po, Loe, Cpy, Sph, Gal) Polymetallic assemblages common (e.g. Mo, W, Sn)Post deformational
Overprinting Mineralisation assemblages Relative timing of emplacement Potential	Strong overprinting common; multiple vein events commonReduced sulphides (e.g. Py, Apy ± Po, Loe, Sb, Hg), minor base sulphidesLate synorogenicSubducted/subcreted crust and/or	Possible minor overprinting due to later structuresReduced sulphides (e.g. Py, Apy ± Po, Loe, Cpy, Sph, Gal) Polymetallic assemblages common (e.g. Mo, W, Sn)Post deformationalShallow granitoids and/or supracrustal
Overprinting Mineralisation assemblages Relative timing of emplacement Potential metal/fluid	Strong overprinting common; multiple vein events commonReduced sulphides (e.g. Py, Apy ± Po, Loe, Sb, Hg), minor base sulphidesLate synorogenicSubducted/subcreted crust and/or supracrustal rocks and/or deep	Possible minor overprinting due to later structuresReduced sulphides (e.g. Py, Apy ± Po, Loe, Cpy, Sph, Gal) Polymetallic assemblages common (e.g. Mo, W, Sn)Post deformationalShallow granitoids and/or supracrustal rocks

Methods

1. Visual Mineralogical

Logging

Petrography

2. Qualitative

Electron microprobe mapping Backscatter electron images X-ray Diffraction 3. Elemental

field portable X-ray Fluorescence

ICP-OES

Company assays

4. Quantitative

Electron microprobe point analysis

Sulphur isotopes

Alteration

Veins

Mineralisation (Py and Apy)

Mineralisation (Cpy and Sph)

Mineralisation (Au)

Gold - sulphide relationship

- Gold
 - <1 to 45 μ m grains.
 - Fracture controlled.
 - Remobilisation unlikely.
- Sulphide
 - At least two generations of pyrite and arsenopyrite.
 - Chalcopyrite and sphalerite occur as cavity and fracture fill and fine irregular grains.
- Relationship
 - Gold, chalcopyrite and sphalerite; coeval and relatively late.

Before nitric acid etching

Electron Microprobe Maps - BSE

Electron Microprobe Maps

Electron Microprobe Maps - BSE

Electron Microprobe Maps

S-isotopes and potential fluid sources

- Bulk rock δ³⁴S signatures determined through aqua regia digestion of five samples.
- Similarity of signatures suggests nearby black shales being a potential source of sulphur.

Sample No.	δ ³⁴ S ‰	Sulphide
	VCDT	
Wyoming One	-8.2	Pyrite
Wyoming One	-8.6	Arsenopyrite
Caloma Two	-8.1	Pyrite
Caloma Two	-7.7	Arsenopyrite
Caloma Two	-7.8	Pyrrhotite
(unmineralised)		(black shale)

- The black shales may have been the main sulphur source.
- Prograde metamorphism of diagenetic pyrite to pyrrhotite may have overprinted the original δ^{34} S signature of ore sulphides.
- δ^{34} S values between -8‰ and -1‰ were found by Downes (2009).

Paragenetic sequence

Orogenic vs. Intrusion-Related

- Most likely to be orogenic
 - Deformation of mineralisation
 - Only minor base metals observed (Cpy and Sph)
 - Gold fineness is typical for orogenic deposits (approx. 875)
 - Occurrence of Au mineralisation all along the Parkes Thrust

Kink bands

Bent albite twins

Main Findings

- Sulphides appear to have been emplaced over more than one event.
- Gold is later than but is spatially associated (fracture controlled) with the main pyrite and arsenopyrite.
 - And appears to be temporally associated with chalcopyrite and sphalerite.
- More likely to be orogenic than intrusion-related.
- The mineralogy of the two drill holes/deposits are very similar.
- Main difference between deposits is structural.
- Further work is needed!
 - More S-isotopes, LA-ICPMS.
 - Extend to the other two deposits.

Thanks to:

The AIG for the bursary support and to SMEDG for the opportunity to present tonight.

Supervisors: Dr Ian Graham and A/Prof David Cohen

Alkane Resources: Terry Ransted and Dave Meates

UNSW Analytical Centre: Dr Karen Privat, Dr Yu Wang and Dorothy Yu

Thin sections: Joanne Wilde

Isotopic Inc.: Dr Anita Andrew

Lithologies

Geochemical classification of lithology

Winchester and Floyd, 1977

Pearce et al., 1984

Image courtesy of Terry Ransted

Wyoming One drill hole base metal assays against gold grade

Caloma Two drill hole base metal assays against gold grade

